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Abstract. In this paper the energy loss of a heavy ion moving in a magnetized quantum electron plasma is
considered within the linear response and binary collision treatments. Treating the electron-ion interaction
force as a small perturbation to the electron nth Landau level we show within the second order perturbation
theory the conformity between these two models.

PACS. 52.40.Mj Particle beam interactions in plasmas – 34.50.Bw Energy loss and stopping power –
03.65.Nk Scattering theory – 52.20.Hv Atomic, molecular, ion, and heavy-particle collisions

1 Introduction

The electron collisions with ions, the ion energy loss and
related processes in a strongly magnetized plasma are one
of the main subject of recent theoretical and experimental
investigations (see, e.g., Refs. [1–18]). These processes are
the basis of the transport phenomena (see, e.g., [1] and
references therein), plasma heating and magnetic confine-
ment of thermonuclear plasmas. In addition, the electron-
ion collisions and the related processes in a magnetized
plasma play an important role in the cooling of heavy-ion
and antiproton beams by electrons (or positrons) [2] and
in the energy transfer for heavy-ion inertial fusion [3].

For a theoretical description of the energy loss of ions
in a plasma there exist two standard approaches. The di-
electric linear response (LR) treatment considers the ion
as a perturbation of the target plasma and the stopping
is caused by the polarization of the surrounding medium.
Within the LR treatment the stopping power can receive a
dynamic contribution from collective plasma excitations.
It requires a cutoff at small distances where hard collisions
between ion and electrons cannot be treated any more as
a weak perturbation. This topic has been intensively in-
vestigated and since 1960s, a number of theoretical calcu-
lations of the stopping power within LR treatment in a
magnetized plasma have been presented both within clas-
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sical (see, e.g., [4–8] and references therein) and quantum
mechanical formalisms [9].

Within the second approach the stopping power is cal-
culated as the result of the energy transfers in successive
binary collisions (BC) between the ion and the electrons.
Here it is essential to consider appropriate approximations
for the screening of the Coulomb potential by the plasma
or an effective upper cutoff for the impact parameters, to
account for screening.

As the problem of two charged particles colliding in
an external magnetic field cannot be solved in closed
form a number of levels of approximations have been
developed. Numerical and analytical calculations have
been performed for classical BC between magnetized elec-
trons [10,11] and for collisions between magnetized elec-
trons and ions [12–17]. In the later case as an ion is much
heavier than an electron, its uniform motion is only weakly
perturbed by collisions with the electrons. Hence for the
electron-ion collision the perturbation theory in the ion
charge Z for small angle scattering might provide an useful
information. This has been done previously in first order
in Z and for an ion at rest [14] as well as in second order
for uniformly moving ion [15,16]. The large angle scatter-
ing in the strong magnetic field shows an chaotic behavior
of the scattering events for low energy electrons [17] where
the scattering angle may have a fractal dependence on the
impact parameter.

Both treatments, LR and BC, can be regarded as com-
plementary to each other. In particular, the lower cutoff
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required within LR treatment should be provided by the
BC. In this paper within the quantum mechanical for-
malism we consider the Coulomb interaction with the ion
as a perturbation to the Landau states of the magnetized
electrons while the ion motion describes classically and re-
mains unchanged (heavy ion). Starting with the BC treat-
ment we show the full agreement with the LR result of
the stopping power. Previously this has been done within
classical approach [16].

2 Linear response formulation

We recall briefly the main results of the LR theory for
the ion energy loss in a magnetized quantum plasma. The
external constant magnetic field is considered to be paral-
lel to the z-direction B = Bez and |ez| = 1. The plasma
is specified by its temperature T and by the plasma fre-
quency ωp =

(
n0e

2/mε0
)1/2, where n0 is the electron den-

sity. The influence of the plasma ions on the projectile ion
energy loss is neglected. The motion of the electrons are
characterized by the cyclotron frequency ωc = eB/m or
the magnetic length λB = (�/mωc)

1/2, where m is the
electron mass.

Consider a test heavy ion of mass M and charge Ze
(−e is the electron charge) that moves with velocity vi

in a magnetized plasma. We assume a mass of the ion
M � m such that a classical description of its motion
with rectilinear trajectory is applicable. With that for the
stopping power (SP) we obtain (see, e.g., [4–9])

SLR = −dEi

ds
=

Z2e2

ε0vi(2π)3

∫
dk

k · vi

k2
Im

−1
ε(k,k · vi)

. (1)

The dielectric function ε(k, ω) of a homogeneous plasma
is given by ε(k, ω) = 1 + V (k)χ(0)(k, ω), where V (k) is
the Fourier transformed electron-electron interaction po-
tential V (k) = (2π)−3e2/(ε0k2). χ(0)(k, ω) is the suscep-
tibility of magnetized quantum plasma (see, e.g., [9])

χ(0)(k, ω) =
2π
λ2

B

∑
σ=±1/2

∞∑
n;n′=0

F 2
nn′(ζ)

×
∫ ∞

−∞
dqz

f
(
Enσ(qz)

) − f
(
En′σ(qz + kz)

)
En′σ(qz + kz) − Enσ(qz) − �ω − i0

, (2)

where ζ = k2
⊥λ

2
B/2. k⊥ denotes the component of k per-

pendicular to the external magnetic field. The positive
infinitesimal +i0 in equation (2) guarantees the causal-
ity of the response. Here the summation is carried out
over all Landau levels n, n′ = 0, 1, 2, ... and spin vari-
able σ = ±1/2. The arguments of the Fermi-Dirac func-
tion f(E) are given by the eigenvalues of the free particles:

Enσ(qz) =
�

2q2z
2m

+ �ωc

(
n+ σ +

1
2

)
. (3)

The function Fnn′(ζ) is given by [19]

Fnn′(ζ) =
(
n!
n′!

)1/2

ζ(n′−n)/2e−ζ/2Ln′−n
n (ζ) (n ≤ n′) ,

(4)
Fnn′(ζ) = (−1)n−n′

Fn′n(ζ) (n > n′), and Ln′
n (ζ) are the

generalized Laguerre polynomial [20].
The relation between the chemical potential µ and the

electron density n0 is established by the normalization rule

1
(2πλB)2

∑
nσ

∫ ∞

−∞
dqzf

(
Enσ (qz)

)
= n0. (5)

In the classical description the SP is derived from lin-
earized Vlasov equation, where the self-consistent elec-
trostatic potential is determined by Poisson’s equation.
Within this approach the dielectric function in equa-
tion (1) is given by its classical representation (see,
e.g., [21]). As stated above a lower cutoff should be in-
troduced here to avoid the divergence of the k integral at
small distances. In contrast to that, in quantum mechan-
ical description the wave nature of the electrons leads to
a quantum expression (2) for the dielectric function and
avoids the cutoff procedure at small distances.

In general the collective excitations (i.e. magnetized
plasma modes) contribute to the stopping power and these
contributions are contained in ε(k,k · vi) in equation (1).
In the following we assume that

Im
−1

ε(k, ω)
=

Imε(k, ω)

|ε(k, ω)|2 � Imε(k, ω)

|ε(k, 0)|2 (6)

which means that the stopping power does not receive any
contribution from the dynamic collective plasma modes.
However the static collective contributions (i.e. screen-
ing) can be easily reintroduced by replacing the ion bare
Coulomb potential, Φ0(k) = (2π)−3Ze/

(
ε0k

2
)
, with an

shielded one Φie(k) = Φ0(k)ε−1(k, 0). Then equation (6)
amounts to neglecting the excitation of the collective
modes but accounts the static shielding of the ion.

In this simplified LR approximation the stopping
power thus reads

S′
LR =

e2

vi

∫
dk |Φie(k)|2 (k · vi) Imχ(0)(k,k · vi). (7)

3 Binary collision formulation

Consider now the electron-ion BC in the presence of quan-
tizing magnetic field. We consider an electron and projec-
tile heavy ion moving in a homogeneous magnetic field B.
We assume that the particles interact with the poten-
tial −eΦie(r − vit), where r and vit are the coordinates
of colliding particles. For charged particles the function
Φie(r) can be expressed, for instance, by the Yukawa type
screened potential, Φie(r) = Ze exp(−r/λ)/4πε0r (λ is the
screening length), for application in plasmas.
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Our starting point is the Schrödinger equation

(
Ĥ0 + Ĥ1(t)

)
ψ = i�

∂ψ

∂t
(8)

with the time-dependent Hamiltonian Ĥ1(t) = −eΦie(r −
vit) and the Hamiltonian of free electron

Ĥ0 =
1

2m
(p̂ + eA)2 + �ωcŝz. (9)

Here A is the vector potential of the magnetic field with
the components Ax = Az = 0 and Ay = Bx. ŝz is the
spin operator. We note that due to it commutes with the
full Hamiltonian in equation (8), and the coefficient of ŝz

in equation (9) is a constant, ŝz is conserved and the spin
and coordinate variables in equation (8) are separable.

Alternatively, one can consider the scattering process
with the stationary interaction Hamiltonian Ĥ1 ∼ Φie(r),
where r is the relative radius vector of the particles. For
instance, the similar program was carried out in refer-
ence [18]. This leads to the energy conservation of the
particles. In contrast to the previous works [18] we use
here more realistic time-dependent Hamiltonian Ĥ(t) =
Ĥ0 + Ĥ1(t). Thus, after interaction the energy of an elec-
tron has not certain value since its energy does not con-
serve.

We seek an approximate solution of equation (8) in
which the interaction potential is considered as a pertur-
bation. We start with the zero-order unperturbed eigen-
states which are described by the zero-order Schrödinger
equation

Ĥ0ψ
(0)
α = i�

∂ψ
(0)
α

∂t
, (10)

where the corresponding eigenstates are labeled by α =
{n, σ, qy , qz}. Here ψ(0)

α is the unperturbed electron wave
function in the state α which is given by ψ

(0)
α (r, t) =

ψ
(0)
α (r)e−iΩαt [22]

ψ(0)
α (r) =

An

2πλ1/2
B

ei(qyy+qzz)e−ξ2/2Hn(ξ)uσ (11)

with Ωα = Eα/�, ξ = x/λB + qyλB, An = (
√
π2nn!)−1/2.

In equation (11) uσ is the spin wave function, Hn is the
Hermite polynomial, and Eα is given by equation (3).

We now seek the solution of the perturbed equation (8)
in the form

ψα(r, t) =
∑

β

aαβ(t)ψ(0)
β (r, t), (12)

where the expansion coefficients are function of time and
β =

{
n′, σ′, q′y, q

′
z

}
. Substituting (12) into equation (8),

and recalling that the function ψ
(0)
β (r, t) satisfy equa-

tion (10) we obtain

ȧαβ(t) = − i

�

∑
γ

hβγ(t)aαγ(t), (13)

where

hβγ(t) = eiΩβγt

∫
drψ(0)∗

β (r)Ĥ1(t)ψ(0)
γ (r) (14)

are the matrix elements of the perturbation, including the
time factor. Here �Ωβγ = Eβ − Eγ .

The expression (13) is exact equation for the expan-
sion coefficients aαβ(t). Since in equation (12) as the un-
perturbed wave function we take the wave function of
the αth stationary state, in the zero order (in the ab-
sence of particles interaction) we find a

(0)
αβ(t) = δαβ . The

equation for the first-order correction is then given by
ȧ
(1)
αβ(t) = −(i/�)hβα(t). Assuming that all corrections van-

ish at t → −∞ and writing the ion-electron interaction
potential using Fourier transformation in space from equa-
tion (12) for the first-order electron wave function we find

ψ(1)
α (r, t) =

e

�

∫
dkΦie(k)

∑
β

ψ
(0)
β (r, t)

× Sβα(k)
ei(Ωβα−ω)t

Ωβα − ω − i0
, (15)

where ω = k · vi, and the matrix Sβα(k) is given by [19]

Sβα(k) =
∫
drψ(0)∗

β (r)eik·rψ(0)
α (r) = δσσ′δky+qy ;q′

y

× δkz+qz;q′
z
e−ikxλ2

B(qy+ky/2)

× exp
[
i (n′ − n) arctan

kx

ky

]
Fnn′(ζ). (16)

At large t→ ∞ the interaction force between the particles
vanishes. Thus after interaction the electron at large t is
described by the superposition of the stationary zero-order
wave functions with the constant expansion coefficients.
The first-order correction to the stationary state ψ(0)

α can
be found from equation (15). At large t from equation (15)
we find ψ(1)

α (r, t) =
∑

β Nαβψ
(0)
β (r, t), where

Nαβ = a
(1)
αβ(∞) =

2πie
�

∫
dkΦie(k)Sβα(k)δ (ω −Ωβα) .

(17)
The quantities Nαβ give the first order correction to the
eigenstates ψ

(0)
α (r, t) after an electron-ion collision. We

note that the diagonal elements of this matrix Nαα ∼
Φie(0). Therefore for the bare Coulomb interaction poten-
tial a lower cutoff kmin = 1/rmax must be introduced in
equation (17) to avoid the divergence at small k. Here
kmin must account for screening with rmax ∼ λ.

Since the energy of an electron during electron-ion in-
teraction is not conserved the Fermi golden rule is not
applicable for calculation of the energy transfer of the
electron after collision with the nonstationary ion. Here
for calculation of the expected energy transfer we intro-
duce the probability current density of the electron in the
state |α〉 [22]

jα(r, t) =
i�

2m
(ψα∇ψ∗

α − ψ∗
α∇ψα) +

eA
m

|ψα|2 (18)



238 The European Physical Journal D

with the corresponding probability density ρα = |ψα|2.
Then the energy change of the electron per unit time can
be calculated as

dWα

dt
= − e

L2

∫
drjα(r, t) · Eext(r, t), (19)

where Eext(r, t) = −∇Φie(r−vit) is the electrical field cre-
ated by a moving ion. Here L is the normalization length.
The energy loss of the ion per unit length (stopping power)
in a homogeneous electron plasma is obtained by averag-
ing equation (19) over the unperturbed electron distribu-
tion function

SBC =
L2

vi

∑
α

f (Eα)
dWα

dt
=

1
vi

∫
drJ(r, t) ·Eext(r, t).

(20)
Here we have introduced the averaged electrical current
and electrical charge density of the electrons

J(r, t) = −e∑
α f (Eα) jα(r, t), (21)

ρ(r, t) = −e∑
α f (Eα) ρα(r, t). (22)

Let us note that equation (20) differs from the general def-
inition of the stopping power (see, e.g., [23]) in terms of the
density matrix. To show the identity of both treatments
we consider the relation J · Eext = Φie∇ · J − ∇ · (ΦieJ).
The last term of this equation vanishes after transforma-
tion of the volume integral into the surface one according
to the Gauss theorem. Using the continuity equation for
the probability current and density the first term can be
rewritten as

ρ
∂Φie

∂t
− ∂

∂t
(ρΦie) = ρviEext − ∂

∂t
(ρΦie) . (23)

The last term in equation (23) is the time derivative of
the function ρΦie which represents the density of plasma
potential energy Upl(r, t) in the electrical field of the exter-
nal ion. However, the total potential energy

∫
Upl(r, t)dr

should be a constant for homogeneous and infinity plasma
as can be traced from the further consideration. Therefore
this term should be omitted. Substituting of the first term
of equation (23) into (20) we arrive at

SBC =
vi

vi
·
∫
drρ(r, t)Eext(r, t) =

vi

vi
· Ftot, (24)

where Ftot is the total averaged electrical force acting on
the plasma. In equation (24) the charge density ρ(r, t)
represents the eigenvalues of the density matrix operator
considered in literature (see, e.g., [23]) which guarantees
the identity of both treatments.

3.1 First-order energy transfer

Below we evaluate the general expressions (18–21) within
first and second order perturbation theory. The first order

energy transfer (see Eqs. (19, 20)) is proportional to the
zero-order probability current density

j(0)α (r, t) =
i�

2m

(
ψ(0)

α ∇ψ(0)∗
α − ψ(0)∗

α ∇ψ(0)
α

)
+
eA
m

∣∣∣ψ(0)
α

∣∣∣2
(25)

or to the zero-order probability density ρ(0)
α =

∣∣∣ψ(0)
α

∣∣∣2:
S

(1)
BC =

vi

vi
·
∫
drρ(0)(r, t)Eext(r, t). (26)

Here ρ(0)(r, t) is related to the probability density ρ(0)
α (r, t)

according to equation (22). Using the Fourier represen-
tation of the interaction potential equation (26) can be
written as

S
(1)
BC =

2πie
λ2

Bvi

∑
nσ

∫ ∞

−∞
dqzf

(
Enσ(qz)

)

×
∫
dkΦie(k) (k · vi) e−i(k·vi)tδ(k). (27)

From equation (27) we finally find S
(1)
BC = 0. Then as for

classical description [15,16] the first-order energy transfer
gives then no contribution and the ion energy loss receives
contribution only from higher orders.

3.2 Second-order energy transfer

Consider now the second-order energy loss which is pro-
portional to the first-order electrical current

S
(2)
BC =

1
vi

∫
drJ(1)(r, t) · Eext(r, t). (28)

Here J(1)(r, t) is related to the j(1)α (r, t) according to equa-
tion (21) and the quantity j(1)α (r, t) is given by

j(1)α (r, t) =
i�

2m

(
ψ(0)

α ∇ψ(1)∗
α − ψ(0)∗

α ∇ψ(1)
α

+ψ(1)
α ∇ψ(0)∗

α − ψ(1)∗
α ∇ψ(0)

α

)

+
eA
m

(
ψ(0)

α ψ(1)∗
α + ψ(0)∗

α ψ(1)
α

)
. (29)

Using equation (15) and Fourier representation of the in-
teraction potential J(1)(r, t) can be written as

J(1)(r, t) =
ie2

2m

∫
dkΦie(k)e−iωt

∑
α;β

Sβα(k)Pαβ(r)

× f (Eα) − f (Eβ)
Ωβα − ω − i0

, (30)

where we have introduced the vector

Pαβ(r) = ψ(0)∗
α (r)∇ψ(0)

β (r) − ψ
(0)
β (r)∇ψ(0)∗

α (r)

+
2ieA

�
ψ

(0)
β (r)ψ(0)∗

α (r). (31)
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Substituting equation (30) into equation (28) and after
some lengthy calculations one arrives at the following ex-
pression for the second-order stopping power (see Ap-
pendix for more details)

S
(2)
BC = − ie2

�vi

∫
dkdk′Φie(k)Φ∗

ie(k
′)ei(ω′−ω)t

×
∑
α;β

Sβα(k)S∗
βα(k′)

(Eβ − Eα)
[
f (Eα) − f (Eβ)

]
Eβ − Eα − �ω − i0

.

(32)

Finally using the expression

∫ ∞

−∞
dqydq

′
ySβα(k)S∗

βα(k′) =

2π
λ2

B

δσσ′δq′
z;qz+kzδ (k − k′)F 2

nn′(ζ) (33)

we obtain S
(2)
BC = S′

LR (see Eq. (7)) derived in simplified
LR treatment. This shows that the complete conformity
is established only between the BC and simplified LR ap-
proaches since there is no collectivity except screening in
either the BC or simplified version of LR treatment. The
same result has been obtained for classical plasmas [16].
However for the later case the conformity is established
only for the “smoothened” interaction potential, which
decays faster than r−1 at large distances and increases
slower than r−1 at small ones. Such a “smoothened” po-
tential can be viewed as an alternative implementation
of cutoffs. Due to the wave nature of the electrons the
quantum mechanical description does not require a cutoff
procedure at low distances and hence the conformity be-
tween BC and simplified LR approaches is valid for any
interaction potential which decays faster than r−1.
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Appendix: Some details for derivation
of equation (31)

Here we give a more detail derivation of equation (31).
When equation (30) is substituted into equation (28)
and the interaction potential is written in k-space then
k ·Tαβ(k) term arises in equation (28), where

Tαβ(k) =
∫
dre−ikrPαβ(r). (A.1)

From the last expression we obtain

k ·Tαβ(k) = −i
∫
dre−ikr∇Pαβ(r). (A.2)

∇Pαβ(r) is calculated from equation (31)

∇Pαβ(r) =
2m
�2

(Eα − Eβ)ψ(0)
β (r)ψ(0)∗

α (r), (A.3)

which together with (A.2) and (16) immediately yield the
following expression

k · Tαβ(k) = −2mi
�2

(Eα − Eβ)S∗
βα(k). (A.4)
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